GROUP THEORY IN THE RUBIK’S CUBE
MICKY SANTIAGO-ZAYAS

ABSTRACT. This project will focus on defining notation and expressing with group theory mathe-
matics of the Rubik’s cube. Starting off with a proof of why the Rubik’s cube rotations form a group.
To later define all the elements of the group as cycle notations. Additionally, evaluate what are the
possible configurations that a cube may have, which would help us determine in the program a legal
randomized starting configuration. Then, would like to explain a notation to define orientation and
position and how these can help figure out a method to solve the cube. With it, we can dive into
theoretical considerations of what the Rubik’s group is, namely, isomorphic groups. Finally, would
use a code in Python, to determine from the initial state of the cube if it is a valid configuration or
not.

1. INTRODUCTION

A well-known combination puzzle was invented in 1974 by Ernd Rubik, consisting of a cube
with 27 smaller cubes (called cubies) of 6 different colors. Its solved configuration occurs when all
the cube’s faces are of the same color. It has inspired world championships to declare the fastest
person to solve it (the current world record for solving the cube is 5.55 seconds.) In addition, it has
inspired many great studies to understand the puzzle. Finding ways to solve the most efficient way
possible and determining what the minimum number of moves from the solved state to the furthest
configuration from it is. This number is called God’s Number and in 2010 was determined to be 20
[4]. The challenge is to find a way to solve an unsolved configuration the most efficient way or the
least moves possible.

The cube can be expressed with Group Theory notation. Where the different transformations and
configurations of the cube form a subgroup of a permutation group generated by the horizontal and
vertical rotations of the puzzle. The solution to the cube can also be described by Group Theory.
Group Theory allows for the examination of how the cube functions and how the twists and turns
return the cube to its solved state. [4]]

2. CUBE NOTATION

2.1. Basic Principles. We use a notation developed by David Singmaster that is incredibly com-
mon, where we refer to the faces as Right (r), Left (/), Up (u), Down (d), Front (f), and Back (b).
When we are referring to the moves of a given face as a one clockwise 90° turn, we will write them
as uppercase letters of the corresponding face, R, L, U, D, F', and B.

Definition 1. As defined by [3l], Cubie and Cubicle: A cubie is one of the 26 colored blocks on the
Rubik’s cube. A corner cubie has 3 visible faces while an edge cubie only has 2. When referring to
the cubies we will name them based off of the starting location of the cubie, not on the colors of the
faces. A Cubicle, on the other hand, is the space in which the cubie lives. If you rotate the face of
the cube the cubicles do not move but the cubies do.

Date: April 30, 2022.

2 MICKY SANTIAGO-ZAYAS

More specifically, to name a corner or edge cubie we list the visible faces in clockwise order. For
example the cubie that lies on the up, right, front corner of the cube is named ur f. This cubie can
also be referred to a fu or fur if we do not care about the orientation of the cubie.

Definition 2. Orientation: The orientation of a cubie refers to the position the cubie has been twisted
into no matter what cubicle the cubie is in. Thus the ur f cubie can be in the urf cubicle but can
be in the orientation of fur because the original Front face is on the Up face, the Up on the Right,
and the Right on the Front. Thus, when we are referring to oriented cubies r fu, fur, and ur f are
not the same. The notation for orientation will be disccussed in section 2.4

2.2. Cycle Notation. If you look at r fu after the move R is applied to it, it moves to the po-
sition rub. Meanwhile rub moves to rbd, rbd moves to rdf and rdf moves to rfu. We can
write these moves, combined with what the move R does to the edge pieces, in cyclic notation
as, R = (rfu,rub,rbd, rdf)(ru,rb,rd,rf) [3]. As a consequence, we can se each of the elements
of G as disjoint cycles,

D = (dlf,dfr,drb,dbl)(df,dr,db, dl) (2.1

R = (rfu,rub, rbd, rdf)(ru,rb,rd,rf) (2.2)

U = (ulb, ubr,ur f,ufl)(ul, ub, ur, uf) (2.3)

L = (luf,lfd,ldb,lbu)(lu,lf,1d,1b) (2.4)

F = (fur, frd, fdl, flu)(fu, fr, fd, fl) (2.5)
B = (bul, bld, bdr, bru)(bu, bl, bd, br) (2.6)

(3]

2.3. Position. We are going to label each edge and corner cubie with a number as done by Cooke
and other studies as follows:

For the corner cubies
1 on the u face of the ufl cubie
2 on the u face of the urf cubie
3 on the u face of the ubr cubie
4 on the u face of the ulb cubie
5 on the d face of the dbl cubie
6 on the d face of the dIf cubie
7 on the d face of the dfr cubie
8 on the d face of the drb cubie
For the edge cubies

1 on the u face of the ub cubie
2 on the u face of the ur cubie
3 on the u face of the uf cubie
4 on the u face of the ul cubie
5 on the b face of the 1b cubie
6 on the b face of the rb cubie
7 on the f face of the rf cubie

8 on the f face of the If cubie
9 on the d face of the db cubie
10 on the d face of the dr cubie

RUBIK’S CUBE GROUP THEORY 3

11 on the d face of the df cubie
12 on the d face of the dl cubie
(31

For the corner cubies we can write this as an element o of Sg (the element of Sy which moves the
corner cubies from their starting positions to the new positions) where o : {1,2,3,4,5,6,7,8} —
{1,2,3,4,5,6,7,8}. Thus o is defined by the placement of the corner cubies in their resulting cubi-
cles after a specific move has been performed. For the edge cubies we can write this as an element
of 7 of S5 where 7 : {1,2,3,4,5,6,7,8,9,10,11,12} — {1,2,3,4,5,6,7,8,9,10,11,12}. Thus
7 is defined by the placement of the edge cubies in their resulting cubicles after a specific move has
been performed. 3]

2.4. Orientation. We must also assess the notation for the orientation of the cubies as we have not
addressed the problem between fur, urf, and ruf. Simply follow the notation from this image in
[?2, p. 15]daniels
2.3. Cube Position. From Lemma 4.3 any corner cube position can be expressed
as a 8-tuple and from Lemma 4.4 any edge cube position can be expressed as a 12-tuple.

However, to determine the individual components of the tuples, a fixed numbering system
will be needed.

FIGURE 4. The fixed orientation markings, as denoted in [5], for the facets
of the Rubik’s Cube [6].

3. RUBIK’S CUBE

3.1. The Rubik’s Cube Group.

On the Rubik’s Cube, there are 54 facets that can be arranged and rearranged through twisting and
turning the faces. Any position of the cube can be describe as a permutation from the solved state.
Thus, the Rubik’s Cube group is a subgroup of a permutation group of 54 elements. [4, p. 13]

Definition 3. The permutation group G = {F, L, U, D, R, B} C Ss, is called the Rubik’s Cube
Group.[4]

Theorem 3.1. The set of moves of the Rubik’s Cube is a group denoted (G, x).

Proof. In order to show that (G, *) is a group we must show that G closed under *, that a right
identity exists, a right inverse exists, and * is associative. Let M; and M, be two moves in G. If M,
and M, are moves then consider M, * M5 is a move as well. Thus G is closed under .

If we let e be the "empty move”, which means it does not change the faces of the Rubik’s cube at
all, then M * e = M. Hence G has a right identity.

If M is an arbitrary move, then let the reverse steps of that move be M. Then M * M, means to first
do all the moves of M and then undo all of the moves of M, leaving us in the same configuration

4 MICKY SANTIAGO-ZAYAS

we started in. Thus M % My = e and therefore M, is the inverse of M and every element of G has
a right inverse.

If C' is an oriented cubie, we will write M (C') for the oriented cubicle that C' ends up in after we
apply the move M, with the faces of M (C') written in the same order as the faces of C. That is,
the first face of C' should end up in the first face of M (C'), and so on. Let M; and M, be two
moves in GG, then M, x M> is the move where we first do M, and then do M,. The move M; moves
C to the cubicle M;(C) and the move M, then moves it to My(M,(C)). Thus, (My x M;)(C) =
My (M;(C')). To show x is associative, we must show that (M, x M)« M3 = My x My Ms) for any
moves My, My, and Mj3. That is, we want to show that [(My * My) x M3](C) = [Myx(My* M3)](C)
for any cubie C. As previously stated in this proof we know that [(M * Ms) * M;3](C) = Ms([M; *
Mg](c)) = Mg(MQ(M1(0)>) On the other hand, [Ml * (MQ * Mg)](c) = (M2 * MS)(Ml(C)) =
M3 (My(M;(C))). So, (My * My) x My = My * (My % Mjz). Thus * is associative. Hence, (G, *) is
a group.[3]] U

Theorem 3.2. G is not abelian.

Proof. Let M, be R and M be B. Let us look at cubie ur f in starting position. M; M, moves urf
to the ulb position. Now if we do moves M,M; with urf in the starting position the ur f cubie
moves to the bru position. Since M; M, and M, M, produce different configurations, which we see
from ur f being in different positions, we can say that G is not abelian. [3]] U

Theorem 3.3. Let C) and C5 be two different unoriented corner cubies, there is a move of the
Rubik’s cube which sends C to C and C5 to C5.

Proof. Let this be a proof by cases. Let C; and C5 be two different unoriented corner cubies.
Suppose that C; and ('] share a face, without loss of generality call it f. Then F" send C) to (1.
Let Cy” denote the position of C; after F". If Cy” = (Y, then we are done.

Suppose Cy” # CY. Since C; # Cs, we can’t have C] = C} or else two different cubies would
occupy the same position. So C', CY, and Cy” are three different corner cubies.

Case 1 There exists a face, shared by C5” and C? but not C]. Without loss of generality call it b,
rotate it B™ times and we have C; — C] and Cy — CY.

Case 2 Cy” and CY, share a face with C].

Case a More than 2 faces are shared with C”, C%, and C]. This is impossible based on the
configuration of the Rubik’s Cube.

Case b Cy” and ', do not share a face. Since every corner cubie shares a face with all but one other
corner cubie, Cy” and C%, each share at least one face with C|. C'y” and C] do not share at least one
face, without loss of generality, call that face 1. C',” can be moved L™ times to share a face with C,,
but not share a face with C]. Without loss of generality call this face R, then C;” can be moved to
C% by R™ moves. Thus, C; — C{ and Cy —).

Suppose that C; and C] do not share a face. Note, each corner cubie does not share a face with only
one other corner cubie. Thus, C'; can be moved by one move to any other adjacent corner and will
now share a face with '], without loss of generality, call that face f. F™ moves will then put the C
cubie into the C] position. If Cy” = (Y, then we are done.

Suppose Cy” # CY. Note, as mentioned earlier C), = Cs and C] # CY. So ', C), and C}, are three
different cubies.

Case 1 There exists a face shared by C,” and C) but not C|. Without loss of generality call this
face u. U™ can move Cy” and CY and therefore, C; — Cf and Cy — Y.

Case 2 There does not exist a face shared by C5” and C5 but not (.

RUBIK’S CUBE GROUP THEORY 5

Case a Every face shared by Cy” and CY is shared with C]. This is impossible based on the
configuration of the Rubik’s Cube.

Case b C,” and (7, do not share a face. Since every corner cubie shares a face with all but 1 other
cubie, C5” and (', both share at least one face with C{. There is a face on Cy” that does not share
a face with C] (otherwise they would be in the same position). Without loss of generality call that
face d. Rotate C,”. D™ times such that C;,” and C, share a face (which is possible since only the
original position of C” will not share a face with CY).

(5" does not share the same face that C?, and C; share. Without loss of generality, call the face that
Cy" and CY, but not C', share . Rotate the face R" times until C5” is in the CY position. Hence,
Ci — C’{ and 02 — Cé

Thus, there is a move of the Rubik’s cube which sends C to C] and C5 to C4. [3] O

3.2. Valid Configurations.

Notice, that although, theoretically there are 8 corner cubies there are 8- 7-6-5-4-3-2-1 = 8|
possible positions of the corner cubies. Since their are 3 faces of a corner cubie, and therefore 3
orientations of a corner cubie, there are 3% possible ways the corner cubies could be oriented. In
the same way we can look at the edge cubies and see their are 12! possible positions and with 2
different faces 2'2? different orientations. Thus, if we combine all of the different possibilities we
see that 2123%8!12! or 5.19 x 102" that is about 519 quintillion potential configurations [3]. They
form part of an illegal Rubik’s Cube Group.

Definition 4. The Illegal Rubik’s Cube Group allows the solver to take the cube apart and reassemble
it in any orientation. Again, some of the orientations are not physically possible on the cube. When
all the possible positions of the facets are combined as a whole, some of the arrangements will not
be physically possible on the cube. [4} p. 16]

However, as mentioned before, not all these configurations are physically actually possible. There
are a set of conditions required so that a specific configuration to be possible from the solved state.
First, let us define and show some specifics. Define the polynomial

A= T[] (xi—x)). (3.1)

1<i<j<n
Theorem 3.4. Forany o € S,,, Ac = £A.
Proof. By definition, Equation (3.1)) so

AU = H (:Eg(i) — ZEU(j)). (3.2)

1<i<j<n

In order to show Ao = +A, we must show two things. First, for each 7 and j with 1 < i < j < n,
we must show that either z,(;) — Z4(;) or its negative appears in A; that is, either x, ;) — 7,(;) or its
negative has the form z; — x; with 1 < k < [< n. Secondly, we must show that, for each ¢ and j
with 1 < ¢ < j < n, either z; — z; or its negative appears in Ac. Since A and Ao have the same
number of terms, these two statements together prove that the terms of A and Ao match up.

To prove the first statement, all we need to show is that either o (i) < o(j) or o(j) < o(i); equiva-
lently, we need to show that o(i) # o(j) if 1 <14 < j < n. This is true because o is one-to-one and
i # 7.

To prove the second statement, we need to show that either x; — x; or its negative can be written as
To(k) — Toqy With 1 < & <1 < n. Since 0 € 5, o~1 € S,; in particular, 0! is also a bijection.

6 MICKY SANTIAGO-ZAYAS

Since i # j, 07 '(i) # o7 '(j). Let k be the smaller of o~'(i) and o~ '(j), and let [be the larger.
Then, 1 <k <[<n,and x; — x; is either x, () — 7, or its negative. [} p. 28] O

With the theorem and definitions above we can then state that the sign of o, denoted sgno is
equal to the sign of A when calculating Ao.

Theorem 3.5. A configuration (o, T,x,y) is valid if and only if the sgno = sgnt (equal parity
of permutations), > x; = 0 mod 3 (conservation of the total number of twists), and > y; = 0
mod 2 (conservation of the total number of flips). [4, 1]

Theorem 3.6. If (0, 7, x,y) and (o', 7', 2, y') are in the same orbit, then (sgno)(sgnt) = (sgno’)(sgn).

(L]

Proof. By [I, Lemma 10.12], it suffices to show that, if (¢/,7",2,y) = (o, 7,2,y) - M where M
is one of the 6 basic moves, then (sgno)(sgnt) = (sgno’)(sgn7’). By [} p. 28, problem 3], 0’ =

O bcomer(M) and 7" = Thegee (M). Therefore, (sgno’)(sgnt’) = (sgno)(sgndeomer(M))(sgnT)(5gn@edge(M)).
If M is one of the 6 basic moves, then @comer (M) and ¢eqee (M) are both 4-cycles, so they both have
sign —1. Thus, (sgno’)(sgnt’) = (sgno)(sgn). [1] O

Theorem 3.7. If (0, T, z,y) is a valid configuration, then sgno = sgnt. [1]]

Proof. This is a direct consequence of Theorem [3.6]since any valid configuration is in the orbit of
the start configuration (1, 1, 0, 0). [1]] O

Theorem 3.8. If (o, 7', 2, y) is in the same orbit as (o, T,x,y), then Y x, = > x; mod 3 and
Syl =>y; mod 2. [1]

The details of this proof are in page 35 of [1]]. As a corollary, we can find.

Theorem 3.9. If (o, 7,x,y) is a valid configuration, then > x; mod 3 and) y; mod 2. [l
Corollary 11.5]

The details to this proof are in page 36 of Chen’s paper [1]]. To complete the proof of theorem|3.5]
we are left to show these following theorems from [[1]]. Proofs and details follow from other lemmas
in [[1] that can be found in pages 37-39.

Theorem 3.10. If (o, 7,x,y) is a configuration such that sgno = sgnt, Y x; = 0 mod 3, and
> y; =0 mod 2, then the orbit of (o, T, x,y) contains some configuration of the form (1, 7', 2 /).

Theorem 3.11. If (1,7, x,y) is a configuration with sgnt = 1, Y x; =0 mod 3, and Y y; =0
mod 2, then the orbit of (1, T, z,y) contains some configuration of the form (1,7',0,y').

Theorem 3.12. If (1, 7,0, y) is a configuration with sgnT = 1 and > y; = 0 mod 2, then the orbit
of (1,7,0,y) contains some configuration of the form (1,1,0,y).

Theorem 3.13. If (1,1,0,y) is a configuration with Y y; = 0 mod 2, then the orbit of (1,1,0,y)
contains the start configuration (1,1,0,0).
4. SOLVING THE RUBIK’S CUBE

4.1. Top Layer. First we are going to solve the top layer. For that we need to make sure that the
edge pieces of the cross align with the colors of the middle pieces on all the faces surrounding
it. After the cross is formed, the corner pieces that match the colors need to be put into the right

RUBIK’S CUBE GROUP THEORY 7

position, as well as orientated correctly. We will do so by cases. First, try to position ub cubicle in
1. By the following cases:

2-U'3—uf:U*4—ul:U5—1b: B!
6—rb:BT7—rf:RU8—1f:L7'U
9—db: B*10 —dr : DB* 11 — df : D*B>
12 —dl: D™'B?

To change its orientation, we must just apply B~'R~'U~!. Having one cubicle in position and
orientation, now turn the whole Rubik’s Cube such that the cubie we just placed is now the ul
cubicle and the cubicle we are trying to solve next is the ub cubicle. Do not worry about orientation,
we are just trying to get the cubie into the correct position. Again, by the following cases:

2—uf:RB3—ul:FR*B5—1b: B!

6—rb:B7—rf:R*BS—If:F 'D*B?

9—db: B*10 —dr: DB 11 — df : D*B?
12 —dl : D™'B?

The move we will use to change the orientation is B2D~'R~!B. For the third edge, hold the
Rubik’s Cube such that the positioned edge pieces are in the u/ and u f cubicles. We are going to
be solving the ub cubicle. Apply from the following cases:

2—uf:RB5—1b:B'6—-rb:B
7T—rf:R*B8—I1f: F'D*B*F9—db: B>10—dr : DB*
11 —df : D*°B*12 —dl: D™'B?

To orient it correctly as done before, apply B2D~' R~! B. Hold the Rubik’s Cube such that the face
without the correct cubie in the cubicle is the Front face, such that the cubicle we are trying to get
the cubie in is uf. If in the front face, F or F'~! as needed to get into position. Otherwise, rotate
the down face until the cubie is in the front (oriented or not), then rotate the front until in position
(oriented or not). To orient, FR~'D~'RF?. With the edge cubies forming a cross on the Up face
we can look to place the correct corner cubies in the Up face cubicles. We will be using the move
DRD'R™or [D, R].

If the cubicle is in the down face, hold the cubie such that the cubicle we need to move the cubie
into is in the ubr cubicle, position 3 by the definition of o, then twist the Down face either once,
twice, once counter clockwise, or don’t twist it at all, such that we end up with the cubie we are
moving in the dbr cubicle. If the cubie we need to move is in position 5, dbl, then twist the Down
face once counterclockwise, if the cubie is in position 6, dl f, then twist the Down face twice, if the
cubie is in position 8, dfr, then twist the Down face once clockwise, and if the cubie is in position
8, dbr, then keep the cubie where it is. Then depending on the orientation of the cubie we will need
to perform [D, R] either once, twice, or five times. If in the Up face, apply [D, R] to put the cubicle
in the down face, and would apply the other case.

8 MICKY SANTIAGO-ZAYAS

4.2. Middle Layer. Now, the plan is to work on the sides adjacent to the top, more specifically,
its edges outside the down layer. The goal is to position and orient them correctly. If the desired
cubie is in the down face, rotate it until its color aligns with the center of one of the faces. Having
that face as the front, if the bottom color matches the one to the right, then apply D'R™'DR. If
the one to the left, DLD~'L~!. If all the edges that do not possess the bottom color are not in the
bottom layer, get one of the unoriented edges to the right face, and apply D~'R~'DR. Then go
back to case 1.

4.3. Bottom Layer. As in the Top-Layer, we wish to form a cross in the bottom face. No edge
cubies in the right orientation, one edge cubie in the right orientation, two edge cubies in the right
orientation on opposite faces, two edge cubies in the right orientation on adjacent faces, or all four
cubies in the right orientation. In case 1, apply RDFD~*F~'R~! which is R[DF]R™! to get one
of the other cases. In the second one, hold the Rubik’s Cube during the such that the edge cu-
bies that match the middle color are in the df and dl cubicles. The third case, perform the move
in this position and be sure to hold the cube such that the edge cubies that match the color of the
middle Down face cubie are in the dl and db cubicles. All this is for the desired fourth configuration.

Now that the Down face edge cubies have the right orientation, we have to get them into the
right position. First rotate the Down face until at least one face has an edge cubie lined up with
the same color on one of the side faces. Note from an earlier exercise that D does not affect the
orientations of any of the edge cubies, only the positions of the Down face edge and corner cubies.
Once you have an edge cubie lined up with its side color call this face F, such that the lined up
edge cubie is in the df cubicle. Note, if you already have two adjacent faces where the edge cubies
lined up you can skip this step. With your positioned cubie on the front face perform the move
F'D-1FD'F~Y(D ")2FD~'D~!. From that move, we should now have two adjacent sides in
the right position as well as the right orientation. When this is the case rotate your entire Rubik’s
Cube so one aligned edge is on the Back face, in the db cubicle, and the other is on the Left face,
in the dl cubicle. Then, with the edge cubies that are in the wrong position on the Right and Left
faces, perform the move D"'R™'D'RD-'R™(D~1)2R.

Next we can begin to look at the corner cubies on the Down face. If all four corners are in the
wrong positions and orientations an extra step must be taken. The move R~!DLD'RDL-'D!
must be performed if all four corners cubies are in the wrong positions. From this point forward,
in order to minimize potential mistakes, flip the Rubik’s Cube so the bottom layer, that still has
unoriented cubies, is now the Up face, and the other two solved layers are the bottom two layers.
Once we have at least one corner in the correct orientation and position we need to look and see
if the three remaining corner cubies are in the correct positions. If not in position, to get the other
cubies into their correct cubicles we will perform the move U RU ~' L='U R~'U~! L with the already
positioned cubie starting in the ur f or 2 corner cubie position. Now, ensure the cube is positioned
having any unoriented corner to the top right of the front. Then apply 2! D! RD until that cubicle
is oriented. If there are still any unoriented cubicles, apply U until you position it the same as before.
Repeat until all the corners are oriented. Now, to finish, apply U until all the colors match with their
faces.

RUBIK’S CUBE GROUP THEORY 9

5. GENERALIZING & VALIDATING ALGORITHM TO SOLVE THE CUBE

Throughout the paper, we have been mostly informing about past studies made over the Rubik’s
Cube and its connection to Group Theory. Still, we can take it a step further and develop an algo-
rithm than can manipulate and visual Rubik’s Cube with the notation and theory developed so far. In
section[6.] there is a python script I developed to work on all possible manipulations of the Rubik’s
Cube. Taking advantage of the cycle notation for all 6 possible movements over the puzzle. Then,
section it is the script responsible of verifying the given cube configuration is valid. Namely,
determining if a configuration is an element in the Rubik’s Group in valid_cube () validating
each condition as stated in theorem[3.5] section[6.2)would also have owned the function responsible
of solving the configuration of a given cube, solve () as discussed in . However, due to lack of
resources, especially for the debugging, the script only validates a cube’s configuration is possible
just with the studied 6 permutations. Finally, section[6.3]is the script needed to have an interaction
with the other two scripts through the terminal.

For our purposes, let us focus on section In it, we have helper functions to determine the
validity of a configuration. First, we need to ensure that the total number of cubies per color do not
surpass 8. Then, we have to determine the sign of the cycles for both the edges and corners. The
algorithm was greatly inspired by [2, Theorem 2.10, Example 2.9]. The first step was to determine
the cycles for each, which was a list of values going from O to 7 inserted in the index that re-
turned them. For example, edge 1 ended in position of edge 2, thus [z, 1, 1, z3, ..., x7|. Harrell’s
work helped visualize the steps for the algorithm [S]. Then, we need to calculate the conservation
for both the twists and turns. The notation for both of them was employed using Harrell’s visual
representations.[3]]

Now, you are more than welcome to run the script over your computer and have your first virtual
Rubik’s Cube. Even more, you can have the configuration of a physical cube put onto the system
and make the UF'LBRD moves over the terminal. You can even try to make up an imaginary
configuration and would determine if the configuration is part of the Rubik’s Group or not. Even
though the system is still not able to solve the cube for you, you can try to do it yourself with the
virtual moves.

6. APPENDIX
6.1. Code: Cube.py.

import random

def generate_cube() :
the top face is white
rrs
Arrays are generated by the colors of the cubies
with the whit face on top and red in the front.
The color arrangement is the standard opposite faces
red-orange, white-yellow, green-blue
rrs
White: [IWI, IWI’ IWI’ IWI’ IWI’ IWI, IWI’ IWI]
red: [IRI, IRI, IRI, IRI, IRI, IRI, IRI’ IRI]

10 MICKY SANTIAGO-ZAYAS

green = ['G', 'G', 'G", 'G", 'G", 'G", 'G', 'G']
blue = [’B’, 'B’, 'B’, 'B’, 'B’, 'B’, 'B’, 'B’]
yellow = ['Y’, ’'Y’, ’'Y’', ’'Y', ’'Y', ’'Y’', 'Y’', 'Y']
orange = ['O’, ’O’, IOI, ’O', IOI, 'O', ’O’, 'O’]
"7 "DEBUGGING PURPOSES’’’
white = [1, 2, 3, 4, 5, 6, 7, 8]
red = [1, 2, 3, 4, 5, 6, 7, 8]
green = [1, 2, 3, 4, 5, 6, 7, 8]
blue = [1, 2, 3, 4, 5, 6, 7, 8]
yellow = [1, 2, 3, 4, 5, 6, 7, 8]
orange = [1, 2, 3, 4, 5, 6, 7, 8]
cube = object_cube(white, red, green, blue, yellow, orange)
return cube
def is_solved (cube) :
(white, red, green, blue, yellow, orange) = ungroup_cube (cube)
for i in range (0, 6):
if (i == 0):
arr = white
value = "W’
if (i == 1) :
arr = red
value = 'R’
if (1 == 2):
arr = green
value = "G’
if (i == 3):
arr = blue
value = "B’
if (i == 4):
arr = yellow
value = 'Y’
if (i == 5)
arr = orange
value = "0’
for j in range (0, 8):
if (arr[j] !'= value):
return False
return True
def print_cube (cube) :
(white, red, green, blue, yellow, orange) = ungroup_cube (cube)
arr = []

for i in range (0, 6):

RUBIK’S CUBE GROUP THEORY

if (i == 0):

arr = white.copy ()

array_name = "white_face"
elif (4 == 1):

arr = red.copy ()

array_name = "red_face"
elif (1 == 2):

arr = green.copy ()

array_name = "green_face"
elif (1 == 3):

arr = orange.copy ()

array_name = "orange_face"
elif (1 == 4):

arr = blue.copy()

array_name = "blue_face"
else:

arr = yellow.copy ()

array_name = "yellow_face"

print (f"{array_name}: {arr[0]}, {arr[1l]},
{arr[2]}, {arr[3]}, {arrl4]}, {arr[5]}, {arrl[6l},
{farr[7]11")

def rotate(face):
return [face[6], face[7], facel[0], facel[l], facel2],
face[3], facel[4d4], face[5]]

def up(white, red, green, blue, yellow, orange):

placeholder = [bluel[0], blue[l], blue[2]]
replace orange to blue
blue[0] = orangel[0]
bluel[l] = orange[l]
bluel[2] = orange[2]

replace green to orange
orange[0] = green|[0]
orange[l] = greenll]
orange[2] = greenl[2]

replace red to green
green[0] = red[0]
green[l] = red[1]
green([2] = red[2]

replace blue to red
red[0] = placeholder[0]
red[1l] = placeholder[1]
red[2] = placeholder[2]

#rotate white
white = rotate (white)

12

def

def

MICKY SANTIAGO-ZAYAS

return white, red, green, blue, yellow, orange

right (white, red, green, blue, yellow, orange):
placeholder = [yellow[2], yvellow[3], yellow[4]]
replace orange to yellow

yellow[2] = orangel6]
yellow[3] = orangel[7]
yellow[4] = orangel[0]
replace white to orange
orange[6] = whitel[2]
orange[7] = whitel[3]

orange [0] white[4]
replace red to white

white[2] = red[2]
white[3] = red[3]
white[4] = red[4]
replace yellow to red
red[2] = placeholder[0]
red[3] = placeholder[1]
red[4] = placeholder[2]

#rotate blue
blue = rotate (blue)
return white, red, green, blue, yellow, orange

left (white, red, green, blue, yellow, orange):

placeholder = [white[0], white[6], white[7]]
replace orange to white
white[0] = orangel[4]
white[7] = orangel[3]
white[6] = orangel[2]

replace yellow to orange
orange[2] = yellow[6]
orange[3] = yellow[7]
orange[4] = yellow[O0]

replace red to yellow
yellow[0] = red[O0]
yvellow[7] = red[7]
yellow[6] = red[6]

replace white to red
red[0] = placeholder[0]
red[6] = placeholder[1]
red[7] = placeholder[2]
#rotate green

green = rotate(green)

return white, red, green, blue, yellow, orange

def back (white, red, green, blue, yellow, orange):

def

def

RUBIK’S CUBE GROUP THEORY

placeholder = [white[0], white[l], white[2]]
replace blue to white
white[0] = bluel[2]
white[l] = bluel[3]
white[2] = bluel[4]

replace yellow to blue
bluel[2] = yellow[4]
blue[3] = yellow[5]
blue[4] = yellow[6]

replace green to yellow
yellow[4] = greenl6]
yellow[5] = green[7]
yellow[6] = green[O0]

replace white to green
green[6] = placeholder[0]
green|[7] = placeholder[1]
green[0] = placeholder([2]
#rotate orange

orange = rotate(orange)

return white, red, green, blue, yellow, orange

down (white, red, green, blue, yellow, orange):

placeholder = [green[4], green[5], green[6]]
replace orange to green

green[4] = orange[4]

green[5] = orange[5]

green[6] = orangel6]

replace blue to orange

orange[4] = bluel4]

orange[5] = bluel5]

orange [6] blue[6]
replace red to blue

blue[4] = red[4]
blue[5] = red[5]
blue[6] = red[6]
replace green to red
red[4] = placeholder[0]
red[5] = placeholder[1]

red[6] = placeholder[2]
frotate yellow
yellow = rotate(yellow)

return white, red, green, blue, yellow, orange

front (white, red, green, blue, yellow, orange):

placeholder = [white[4], white[5], white[6]]

13

14

def

MICKY SANTIAGO-ZAYAS

replace green to white

white[4] = green|[2]
white[5] = green[3]
white[6] = green[4]

replace yellow to green
green[2] = yellow[O0]
green[3] = yellow[1]
green[4] = yellow[2]

replace blue to yellow
yellow[0] = bluel6]
yvellow[1l] = blue[7]
yellow[2] = blue[0]

replace white to blue
blue[6] = placeholder[0]
blue[7] = placeholder[1]
blue[0] = placeholder[2]

#rotate red
red = rotate (red)
return white, red, green, blue, yellow, orange

move (cube, move_num) :

(white, red, green, blue, yellow, orange) = ungroup_cube (cube)

if (move_num == 1):

print ("up")

(white, red, green, blue, yellow, orange) =

up (white, red, green, blue, yellow, orange)
elif (move_num == 2):

print ("right")

(white, red, green, blue, yellow, orange) =

right (white, red, green, blue, yellow, orange)
elif (move_num == 3):

print ("left")

(white, red, green, blue, yellow, orange) =

left (white, red, green, blue, yellow, orange)
elif (move_num == 4):

print ("back")

(white, red, green, blue, yellow, orange) =

back (white, red, green, blue, yellow, orange)
elif (move_num == 5):

print ("down")

(white, red, green, blue, yellow, orange) =

down (white, red, green, blue, yellow, orange)
elif (move_num == 6):

print ("front")

(white, red, green, blue, yellow, orange) =

front (white, red, green, blue, yellow, orange)

def

def

def

RUBIK’S CUBE GROUP THEORY

return object_cube (white, red, green, blue, yellow, orange)

randomize_cube (cube) :
for i in range (0, 30):
random_int = random.randint (1, 6)
cube = move (cube, random_int)
return cube

object_cube (white, red, green, blue, yellow, orange):
cube = [white, red, green, blue, yellow, orange]
return cube

ungroup_cube (cube) :

white = cube[0]

red = cube[1]

green = cube[2]

blue = cube[3]

yellow = cube[4]

orange cube [5]

return white, red, green, blue, yellow, orange

6.2. Code: Solver.py.

import Cube

def

def

add_to_color (char, r, g, b, w, o, Vy):

if (char == "W’):
w += 1

if (char == 'R’):
r += 1

if (char == 'G’"):
g t=1

if (char == '"B’):
b += 1

if (char == "Y’):
y += 1

if (char == "0’):
o +=1

return r, g, b, w, 0o, Vv

parity_cycle (cycle) :

par = 0

passed = []

for 1 in range (0, len(cycle)):
first = cyclel[i]

if first not in passed:
current = cycle[first]

15

16 MICKY SANTIAGO-ZAYAS

long = 0

passed.append (first)

while (first != current):
passed.append (current)
long += 1
current = cycle[current]

par += long

return 1 if even
return -1 if odd
if (par % 2 == 0):

return 1
return -1

def fix_corner (corners) :
new = []
for i in range (0, 8):
if ("B’ in corners[i] and 'Y’ in corners[i] and
"R’ in corners[i]):
new.append (" BYR’)
elif (B’ in corners[i] and 'Y’ in corners[i] and
O’ in corners[i]):
new.append (' BYO')
elif (B’ in corners[i] and "W’ 1in corners[i] and
O’ in corners[i]) :
new.append (' BWO’)
elif (B’ in corners[i] and "W’ in corners[i] and
"R’ in corners[i]):
new.append (' BWR")
elif ('G’ in corners[i] and "W’ in corners[i] and
"R’ in corners[i]):
new.append (' GWR')
elif ('G’ in corners[i] and 'Y’ 1in corners[i] and
"R’ in corners[i]):
new.append (" GYR’)
elif (G’ in corners[i] and "Y'’ in corners[i] and
O’ in corners[i]):
new.append (' GYO")
elif (/'G’ in corners[i] and "W’ in corners[i] and
O’ in corners[i]):
new.append (' GWO')
return new

def make_corner_arr (cube) :
(white, red, green, blue, yellow, orange) = Cube.ungroup_cube (cube)
1 is byr

RUBIK’S CUBE GROUP THEORY

bluel6], yellow([2], red[4]
2 is byo

bluel4], yellow[4], orangel[6]
3 1is bwo

bluel[2], white[2], orange[0]
4 is bwr

blue[0], white[4], red[2]
5 is gwr

green[2], white[6], red[0]
6 is gyr

green[4], yellow[0], red[6]
7 is gyo

green[6], yellow[6], orangel[4

8 is gwo
green[0], white[0], orangel[2]

pos = [[o6, 2, 4], [4, 4, o], [2, 2,
(4, o0, o1, [6, 6, 4], [0, O, 2]]
corners = []

for 1 in range (0, 4):
string = bluel[pos[i][0]]

if (1 == 0):

string += yellow[pos[i][1]]
elif (4 == 1):

string += yellow[pos[i][1]]
elif (4 == 2):

string += white[pos[i] [1]]
else:

string += white[pos[i][1]]
corners.append(string)
for 1 in range (4, 8):

string = green[pos[i][0]]
if (1 == 4):

string += white[pos[i] [1]]
elif (i == 5):

string += yellow[pos[i][1]]
elif (1 == 6):

string += yellow[pos[i][1]]
else:

string += white[pos[i] [1]]
corners.append(string)
corners = fix_corner (corners)
return corners

def cycle_corners (cube) :

]

+ red[pos[i] [2]]
+ orange[pos[i] [2]]
+ orange[pos[i] [2]]

+ red[pos[i] [2]]

+ red[pos[i][2]]
+ red[pos[i][2]]
+ orange[pos[i] [2]]

+ orange[pos[i] [2]]

17

corner_start =

MICKY SANTIAGO-ZAYAS

[’BYR’, ’'BYO’,

corners = make_ corner_arr (cube)

cycle = []

for 1 in range (0, 8):
cycle.append (corners.index (corner_start[i]))

return cycle

def find_corner_par (cube) :
cycle = cycle_corners (cube)

return parity_cycle(cycle)

def fix_edge (edges):

new = []

for 1 in range (0, 12):

if (B’ 1in

edges[i1] and 'O’

new.append (" BO’)
elif (B’ in edges/[i]
new.append (' BY')
elif (B’ in edges/[i]
new.append (' BW’)
elif ('B’ in edges[i]
new.append (' BR’)
elif (/G’ in edges][i]
new.append (" GW’)
elif (G’ in edges/[i]
new.append (" GR")
elif ('G’ in edges/[i]
new.append (' GY")
elif ('G’ in edges][i]
new.append (' GO")
elif ('O’ in edges[i]
new.append (' 0Y")
elif ('O’ in edges/[i]
new.append (" OW’)
elif ('R’ in edges/[i]
new.append ("RY")
elif ('R’ in edges]|[i]
new.append (' RW’)

return new

def make_edge_arr (cube) :
(white, red, green, blue,

1 is bo
bluel3],
2 is by

orange[7]

and Y’
and "W’
and 'R’
and "W’
and "R’
and Y’
and 'O’
and 'Y’
and "W’
and "Y'’

and "W’

yellow,

"BWO’", "BWR’, ’"GWR’, ’'GYR’, ’'GYO', "GWO']

in edges[i]) :

in edges[i]) :
in edges[i]):
in edges[i]):
in edges[i]):
in edges[i]) :
in edges[i]):
in edges[i]):
in edges[i]):
in edges[i]) :
in edges[i]) :

in edges[i]):

orange) = Cube.ungroup_cube (cube)

10
11
12
pos

[7,3
edge

for

for

for

RUBIK’S CUBE GROUP THEORY

bluel[5], yellow[3]

is br

bluel[7], red[3]

is bw

blue[l], white[3]
is ow

orange[l], white[1l]
is oy

orange[5], yellow[5]
is ry

red[5], yellow[1l]
is rw

red[1l], white[5]

is go

green[7], orangel[3]
is gy

green[5], yellow[7]
is gr

green[3], red[7]

is gw

green[1l], white[7]

o 05, 71, (3, 71, [1, 7]]
S

—
[a—

i in range (0, 4):
string = bluel[pos[i] [0]]
if (i == 0):

string += orange[pos[i][1l]]
elif (1 == 1):

string += yellow[pos[i][1]]
elif (4 == 2):

string += red[pos[i][1l]]
else:

string += whitel[pos[i] [1]]
edges.append (string)
i in range (4, 6):
string = orange[pos[i][0]]
if (1 == 4):

string += white[pos[i] [1]]
else:

string += yellow[pos[i][1]]
edges.append (string)
i in range (6, 8):
string = red[pos[i][0]]

19

20

def

def

def

def

MICKY SANTIAGO-ZAYAS

if (i == 6):
string += yellow[pos[i][1]]
else:
string += white[pos[i][1]]
edges.append (string)
for 1 in range (8, 12):

string = green[pos[i][0]]
if (1 == 8):

string += orange[pos[i][1]]
elif (1 == 9):

string += yellow[pos[i][1]]
elif (1 == 10):

string += red[pos[i][1]]
else:

string += white[pos[i] [1]]
edges.append (string)
edges = fix_edge (edges)
return edges

cycle_edges (cube) :
edge_start = [’'BO’, ’'BY’, ’'BR’, ’'BW’, 'Oow’, ’'OY’, 'RY’, 'RW', ’'GO’,
’GY’, IGRI, IGWI]
edges = make_edge_arr (cube)
cycle = []
for i in range (0, 12):
cycle.append (edges.index (edge_start[i]))
return cycle
find_edge_par (cube) :
cycle = cycle_edges (cube)
return parity_cycle (cycle)
orientation_num_edge (inface, adj):
if (inface == "W’ or inface == 'Y’'):
return O
elif (adj == "W or adj == 'Y'):
return 1
elif (inface == 'R’ or inface == ’'0’):
return 1
elif (inface == ’'G’ or inface == 'B’):
return 0
sum_edges (cube) :
(white, red, green, blue, yellow, orange) = Cube.ungroup_cube (cube)

sum = 0

RUBIK’S CUBE GROUP THEORY

verify white face
for i in range (0, 4):

adjy = 0
if (i == 0):
adj = orange[1l]
elif (i == 1):
adj = blue[l]
elif (1 == 2):
adj = red[1]
else:
adj = green[1]
sum += orientation_num edge (white[2 » 1 + 1], adj)

verify yellow face
for 1 in range (0, 4):

adj = 0
if (1 == 0):

adj = red[5]
elif (1 == 1):

adj = bluel5]
elif (1 == 2):

adj = orange([5]
else:

adj = green|[5]
sum += orientation_num_edge (yellow([2 *= 1 + 1], adj)
verify remaining horizontal
for i in range (0, 4):

adj = 0
face = 0
if (1 == 0):
adj = redl[7]
face = green[3]
elif (1 == 1):
face = green[7]
adj = orange[3]
elif (1 == 2):

face = bluel[7]
adj = red[3]

else:
face = bluel[3]
adj = orangel[7]
sum += orientation_num_edge (face, adj)
if (sum % 2 != 0):

return False
return True

def orientation_num_corner (inface, clock, anti):

21

22 MICKY SANTIAGO-ZAYAS

if (inface == "W’ or inface == 'Y’'):
return 0

elif (clock == "W’ or clock == "Y"):
return 2

elif (anti == "W’ or anti == "Y’):
return 1

def sum_corners (cube) :
(white, red, green, blue, yellow, orange) = Cube.ungroup_cube (cube)
sum = 0
verify white face
for 1 in range (0, 4):

clock = 0
anti = 0
if (i == 0):
clock = green[0]
anti = orange[2]
elif (4 == 1):
clock = orange[0]
anti = blue[2]
elif (1 == 2):
clock = blue[0]
anti = red[2]
else:
clock = red[0]
anti = green|[2]

sum += orientation_num_corner (white[2 % 1], clock, anti)
verify yellow face
for 1 in range (0, 4):

clock = 0
anti = 0
if (i == 0):
clock = green[4]
anti = red[6]
elif (1 == 1):

clock = redf[4]
anti = blue[6]

elif (1 == 2):
clock = blue(4]
anti = orange[6]
else:
clock = orange[4]
anti = green|[6]
sum += orientation_num_corner (yellow[2 x 1], clock, anti)
if (sum % 3 != 0):

return False

def

def

RUBIK’S CUBE GROUP THEORY 23

return True

valid_cube (cube) :
verify there are only eight cubies of each color

(white, red, green, blue, yellow, orange) = Cube.ungroup_cube (cube)

r =0

g =20

b =20

w =20

y = 0

o =20

for 1 in range (0, 8):
(r, 9, b, w, o, y) = add_to_color(whiteli], ¥, g, b, w, o, V)
(r, 9, b, w, o, y) = add_to_color(red[i], r, g, b, w, 0, V)
(r, g, b, w, o, y) = add_to_color(bluel[i]l, r, g, b, w, o, V)
(r, g, b, w, o, y) = add_to_color(greenli], r, g, b, w, o, V)
(r, g, b, w, o, y) = add_to_color (orangel[il, r, g, b, w, o, V)
(r, g, b, w, o, y) = add_to_color(yellow[i], r, g, b, w, o, V)

if (not (r == g == b == w == 0 ==y == 8)):

return False
1f same sign
if (find_corner_par (cube) != find_edge_par (cube)) :
return False
if number of twists is conserved
if (not sum_corners (cube)):
return False
1f number of flips is conserved
if (not sum_edges (cube)):
return False
return True

solve (cube) :
i1f (not wvalid_cube (cube)):
return False

if (Cube.is_solved(cube)) :

print ("The given cube is already solved!")
while (not Cube.is_solved (cube)) :

move = 0

determine the next move

update move

cube = Cube.move (cube, move)

return Cube.generate_cube ()

return cube

24

MICKY SANTIAGO-ZAYAS

6.3. Code: main.py.

import Cube, Solver

def

def

def

def

def

def

new_cube () :
cube = Cube.generate_cube ()
return cube

randomize_cube (cube) :
return Cube.randomize_cube (cube)

given_cube (cube) :

if (not Solver.valid_cube (cube)):
print ("The given cube is not wvalid!")
Cube.print_cube (cube)

else:
cube = Solver.solve (cube)

first_interaction():

print ("Welcome to Rubik’s Cube Solver!")

print ("0O: To close Rubik’s Cube Solver")
("1

print (" To generate a solved Rubik’s Cube")
print ("2: To input a Rubik’s Cube configuration")
decision = input ("Please enter your choice: ")
if (decision == "0'):

return -1
if (decision == ’"1"):

return new_cube ()
if (decision == "2"):

give_success = terminal_give ()

if (give_success == -1):

return O
else:

return give_success

valid_input (color) :
if (color == "W’ or color == 'R’ or color == "G’
color == 'O’ or color == 'Y"):
return True
return False

ask_face() :

face = []

for i in range(l, 9):
while (True) :

or color ==

IBI

or

def

RUBIK’S CUBE GROUP THEORY 25

input_color = input ("%d cubie: " % (i))
if (input_color == ’'QUIT’):

return -1
if valid_input (input_color) :
break
print ("Give a valid value")
face.append (input_color)
return face

terminal_give() :
print ("Give the colors of the cubie as follows:")
print ("1. Red is the front, white up, and blue to the right.")
print ("2. The order is clockwise from the top left cubie")
print ("3. Do NOT include the center of the face,
use those to orient the cube")
print ("4. White = W, Red = R, Green = G, Blue = B,
Yellow = Y, Orange = O")
print ("To quit, type "QUIT’'")
ask for white face
print ("\tWhite Face:")
white = ask_face ()
if (white == -1):
return -1
ask for red face
print ("\tRed Face:")
red = ask_face()
if (red == -1):
return -1
ask for green face
print ("\tGreen Face:")
green = ask_face()
if (green == -1):
return -1
ask for orange face
print ("\tOrange Face:")
orange = ask_face ()
if (orange == -1):
return -1
ask for blue face
print ("\tBlue Face:")
blue = ask_face()
if (blue == -1):
return -1
ask for Yellow face
print ("\tYellow Face:")
yvellow = ask_face()

26 MICKY SANTIAGO-ZAYAS

if (yellow == -1):
return -1
cube = Cube.object_cube (white, red, green, blue, yellow, orange)

if (Solver.valid_cube (cube)) :
return cube
else:
print ("The given cube was invalid")
Cube.print_cube (cube)
return -1

def terminal_has_cube (cube) :
while (True):

print ("O: Destroy the cube")

print ("1l: Solve the cube")

print ("2: Make a move")

print ("3: Randomize the cube")

choice = input ("Please enter your choice: ")

if (choice == '0"):
print ("Cube was deleted!")
Cube.print_cube (cube)
return -1

if (choice == "1"):
cube = Solver.solve (cube)
Cube.print_cube (cube)
if (choice == "2"):
cube = make_move (cube)
if (choice == "3"):
cube = randomize_cube (cube)

Cube.print_cube (cube)

def make_move (cube) :
while (True) :
print ("0: To return to menu for the cube")

print ("1: Up/white rotation")
print ("2: Right/blue rotation")
print ("3: Left/green rotation")
print ("4: Back/orange rotation")
print ("5: Down/yellow rotation")
print ("6: Front/red rotation")
choice = input ("Please enter your choice: ")
if (choice == "0"):

return cube
if (choice == "1"):

print ("Moved the White face")

cube = Cube.move (cube, 1)

Cube.print_cube (cube)

RUBIK’S CUBE GROUP THEORY

elif (choice == "27):
print ("Moved the Blue Face")
cube = Cube.move (cube, 2)

Cube.print_cube (cube)

elif (choice == "37):
print ("Moved the Green Face")
cube = Cube.move (cube, 3)
Cube.print_cube (cube)

elif (choice == "47"):
print ("Moved the Orange Face")
cube = Cube.move (cube, 4)
Cube.print_cube (cube)

elif (choice == ’5"):
print ("Moved the Yellow Face")
cube = Cube.move (cube, 5)
Cube.print_cube (cube)

elif (choice == "6"):
print ("Moved the Red Face")
cube = Cube.move (cube, 6)
Cube.print_cube (cube)

while (True) :

choice = first_interaction|()

if (choice == -1):
print ("Goodbye!")
break

elif (choice != 0):
Cube.print_cube (choice)
terminal_has_cube (choice)

REFERENCES

[1
[2] Keith Conrad. The sign of a permutation.

] JJ Chen. Group theory and the rubik’s cube, 2004.
]

[3] Courtney Cooke. Solving the rubik’s cube using group theory. 2017.
]
]

[4] Lindsey Daniels. Group theory and the rubik’s cube. Lakehead Universityc, 2014.

[5] Sean Harrell. Rubik’s cubes and group theory. 2012.

PURDUE UNIVERSITY, WEST LAFAYETTE, IN, USA
Email address: mdsantia@purdue.edu

27

	1. Introduction
	2. Cube Notation
	2.1. Basic Principles
	2.2. Cycle Notation
	2.3. Position
	2.4. Orientation

	3. Rubik's Cube
	3.1. The Rubik's Cube Group
	3.2. Valid Configurations

	4. Solving the Rubik's Cube
	4.1. Top Layer
	4.2. Middle Layer
	4.3. Bottom Layer

	5. Generalizing & Validating Algorithm To Solve The Cube
	6. Appendix
	6.1. Code: Cube.py
	6.2. Code: Solver.py
	6.3. Code: main.py

	References

